Journal
Articles
A bold-faced name
designates main/corresponding author.
[Unsupervised Learning]
- Choi, H.,
Poythress, J. C., Park, C., Jeon, J.-J., and Park, C. (2019). Regularized
boxplot via convex clustering. Journal of Statistical Computation and
Simulation. 89:7, 1227-1247.
- Choi, H. and Park, C. (2016). Shrinkage boxplot for
outlier detection. Journal of the Korean Data Analysis Society.
18(5), 2435-2443. (In Korean)
[Semi-Supervised Learning]
- Park, B.-J. and Park, C. (2022). Multicategory
Laplacian support vector machines and their variable selection. Submitted
to Computational Statistics and Data Analysis.
- Choi, B.-J., Kim, K.-R., Cho, K.-D., Park, C.,
Koo, J.-Y. (2014). Variable Selection for Naive Bayes Semi-supervised
Learning. Communications in Statistics - Simulation and
Computation. 43(10), 2702-2713.
- Lee, S. J., Park, C., and Koo,
J.-Y. (2011). Feature selection in the Laplacian Support Vector Machine.
Computational Statistics and Data Analysis.
55(1), 567-577.
- Choi, B.-J., Chae, Y.-S., Choi, W.-Y.,
Park, C., and Koo, J.-Y. (2008). Mixture Discriminant Analysis for
Semi-Supervised Learning. The Korean Journal of Applied Statistics,
21(5), 825-833. (In Korean)
[Supervised Learning]
- Hwang, H., Choi, H. and Park,
C.(2022). Variable selection for nonlinear support vector machines
via elastic net penalty. Journal of the Korean Data & Information
Science Society. (In Korean)
- Kang, I., Park, C., Yoon, Y. J., Park, C., Kwon,
S.-S., and Choi, H. (2021). Classification of histogram-valued data with
support histogram machines. Journal of Applied Statistics. In
Press.
- Bak, K.-Y., Kim, K.-R., Kim, P. T., Koo, J.-Y.,
Park, C., and Zhu, H. (2021). Nonparametric matrix regression function
estimation over symmetric positive definite matrices. Journal of the
Korean Statistical Society. 50(3), 795-817.
- Shin, J., and Park, C.(2021).
FDR-based categorical variable selection in naive Bayes classification.
Journal of the Korean Data & Information Science Society.
32(6), 1329-1341. (In Korean)
- Park, B.-J. and Park, C.(2021).
Kernel variable selection for multicategory support vector machines.
Journal of Multivariate Analysis. 186, Article
104800.
- Park, K., and Park, C.(2021).
Comparison of nonlinear classification methods for image data. Journal
of the Korean Data & Information Science Society.
32(4), 767-780. (In Korean)
- Jang, Y., Park, B.-J., and Park,
C.(2019). Comparison study of K-nearest neighborhood
classification algorithms. Journal of the Korean Data & Information
Science Society. 30(5), 977-985. (In Korean)
- Park, B.-J. and Park, C.(2018).
Comparison study of classification methods for image data. Journal of
the Korean Data & Information Science Society.
29, 267-276. (In Korean)
- Choi, H., Kim, Y., Kwon, S., and Park,
C. (2017). A robust support vector machine with labeling errors.
Communications in Statistics - Simulation and Computation.
46(8),6061-6073.
- Choi, D., Choi, H., and Park,
C.(2016). Classification of ratings in online reviews. Journal
of Korean Data & Information Science Society.
27(4), 845-854. (In Korean)
- Kim, M.S., Choi, H., and Park,
C.(2015). Categorical variable selection in Naive Bayes
Classification. The Korean Journal of Applied Statistics.
28(3), 407-415. (In Korean)
- Choi, H., Koo, J.-Y., and Park,
C.(2015). Fused lasso for credit scoring. Journal of
Statistical Computation and Simulation. 85(11),
2135-2147.
- Choi, H., Park, H., and Park,
C.(2013). Support vector machines for big data analysis.
Journal of Korean Data & Information Science Society.
24(5), 989-998. (In Korean)
- Kim, K. and Park, C.(2013).
Comparison of feature selection methods in support vector machines. The
Korean Journal of Applied Statistics. 26(1), 131-139.
(In Korean)
- Koo, J.-Y., Park, K. W., Kim, B. W., Kim, K. R.
and Park, C.(2013). Structured kernel quantile regression.
Journal of Statistical Computation and Simulation.
83(1), 179-190.
- Park, C., Kim, K. R., Myung, R.,
and Koo, J.-Y. (2012). Oracle properties of SCAD-penalized support vector
machine. Journal of Statistical Planning and Inference.
142(8), 2257-2270.
- Choi, H. and Park, C.(2012).
Approximate penalization path for smoothly clipped absolute deviation.
Journal of Statistical Computation and Simulation.
82(5), 643-652.
- Jin, S. K., Kim, K. R., and Park,
C.(2012). Cutpoint selection via penalization in in credit
scoring. The Korean Journal of Applied Statistics,
25(2), 261-267. (In Korean)
- Yeo, J.-G., Park, C., and Koo, J.-Y. (2011). A
comparison study of cutpoint selection methods in credit scoring .
Journal of the Korean Data Analysis Society,
13(6), 2915-2923. (In Korean)
- Park, C.(2009). Convergence
Rates of Generalization Errors for Margin-based Classification. Journal
of Statistical Planning and Inference. 139(8),
2543-2551.
- Koo, J., Park, C., Jhun, M.
(2009). A Classification Spline Machine for Building a Credit Scorecard.
Journal of Statistical Computation and Simulation,
79(5), 681-689.
- Ha, J. H. and Park, C.(2009).
Variable Selection in Linear Discriminant Analysis. Journal of the
Korean Data Analysis Society, 11(1), 381-389. (In
Korean)
- Koo, J.-Y., Lee, Y., Kim, Y. and Park,
C.(2008). A Bahadur Representation for the Linear Support Vector
Machine. Journal of Machine Learning Research, 9,
1343-1368.
- Park, C., Koo, J. -Y., Kim, P.
T., and Lee, J. W. (2008). Stepwise Feature Selection Using the Generalized
Logistic Loss. Computational Statistics and Data Analysis,
52(7), 3709-3718.
- Park, C., Koo, J. -Y., Kim, S.,
Sohn, I., and Lee, J. (2008). Classification of Gene Functions Using
Support Vector Machine for Time-Course Gene Expression Data.
Computational Statistics and Data Analysis,
52(5), 2578-2587.
- Park, C.(2007). When Can Support
Vector Machines Achieve Fast Rates of Convergence? Journal of Korean
Statistical Society, 36(3), 367-372.
- Lee, S. J., Park, C., Jhun, M. and Koo, J. -Y.
(2007). Support Vector Machine Using K-Means Clustering. Journal of
Korean Statistical Society, 36(1), 175-182.
- Song, S. H., Kim, K. H., Park, C., and Koo, J.-Y.
(2007). Gene Selection Based on Support Vector Machine Using Bootstrap.
The Korean Journal of Applied Statistics, 20(3),
531-540. (In Korean)
[Graphical Models]
- Park, B.-J., Choi, H., and Park,
C.(2021). Negative binomial graphical model with excess zeros.
Statistical Analysis and Data Mining. 14,
449-465.
- Choi, H., Gim, J., Won, S., Kim, Y. J., Kwon, S.,
and Park, C.(2017). Network analysis of count data with
excess zeros. BMC Genetics, 18:93.
- Park, C.(2014). Comparison
of model selection criteria in graphical LASSO. Journal of the Korean
Data & Information Science Society. 25(4),
881-891. (In Korean)
[Applications in Biology]
- Kim, J., Sohn, I., Jung, S.-H., Kim, S.,
and Park, C.(2012). Analysis of survival data with group
lasso. Communications in Statistics - Simulation and Computation.
41(9), 1593-1605.
- Gim, J., Kim, W., Kwak, S. H., Choi, H., Park,
C., Park, K.S., Kwon, S., Park, T., and Won, S. (2017). Improving Disease
Prediction by Incorporating Family Disease History in Risk Prediction
Models with Large-Scale Genetic Data. Genetics.
207(3), 1147-1155.
- Won, S., Choi, H., Park, S., Lee, J.,
Park, C., and Kwon, S. (2015). Evaluation of penalized and
non-penalized methods for disease prediction with large-scale genetic data.
BioMed Research International. vol. 2015, Article ID 605891, 10
pages. doi:10.1155/2015/605891.
- Sohn, I., Kim, J., Jung, S.-H. and Park,
C.(2009). Gradient Lasso for Cox Proportional Hazards Model.
Bioinformatics, 25(14), 1775-1781.
- Park, C., and Sohn, I.
(2008). A Copula Method for Modeling Directional Dependence of Genes.
BMC Bioinformatics, 9:225.
[Applications in Transportation]
- Goel, P. K., McCord, M. R. and Park, C.
(2005). Exploiting Correlations between Link Flows to Improve Estimation of
Average Annual Daily Traffic on Coverage Count Segments: Methodology and
Numerical Study. Transportation Research Record: Journal of the
Transportation Research Board, No. 1917, 100-107.
- Lee, S., Ahn, S., Park, C., and Jeon, J.
(2002). Spatial-Temporal Modeling of Road Traffic Data in Seoul City.
Journal of Korean Data & Information Science Society,
13(2), 261-270.
Proceedings
- McCord, M. R., Goel, P. K., Jiang, Z., and Park, C. (2006). Improved AADT
Estimation on Coverage Count Segments from Volume Correlations with
Multiple ATR-Equipped Segments: Empirical Result from Ohio Highways. No.
06-1296, TRB 2006 Annual Meeting.
- Ahn, S., Park, C. and Lee, J. (2000).
Prediction of missing data using spatial model: Application to ITS.
Proceedings of the 7th World Congress on Intelligent Transport
Systems, Turin, Italy.
Books
- Koo, J.-Y., Kim, K.-R., and Park, C. (2014). Computational statistics
in R. Free Academy. ISBN 979-11-5808-049-5. (In Korean).
- Park, C., Kim, Y., Kim, J., Song, J., and
Choi, H. (2011). Data mining with R. Kyowoo Publisher. ISBN
978-89-8172-893-9. (In Korean).